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a b s t r a c t

Signal transduction is the process of signal conversion that cells use to communicate
among themselves and their environments. In this process, a cell converts one kind of sig-
nal or stimulus into another. This cellular communication brings about many cellular activ-
ities in response to the signals. Therefore, in-depth knowledge and understanding of this
process, especially concerning the roles of G-proteins and cell receptors, which are the
important components of the signal transduction process, could greatly benefit medical
science, particularly in terms of medical diagnosis and treatment.

In this research we study early events in signal transduction including receptor/ligand
binding and G-protein activation using an ordinary differential equation model. Motivated
by experimental data and the mathematical model proposed by Chen et al. [C.Y. Chen et al.,
Modelling of signalling via G-protein coupled receptors: pathway-dependent agonist
potency and efficacy, Bull. Math. Biol. 65 (2003) 933–958] to explain the agonist potency
and efficacy of drugs regulated by signaling dynamics via G-proteins and receptors, we
extended their model to take into account internalization, recycling, degradation and syn-
thesis of the receptors in this process to obtain a more realistic model. By analyzing the
extended model, we have found that the numerical results agree well with experimental
observation. Qualitatively, this modified model is shown to be more realistic than the pre-
vious one in some respects when certain experimental findings are considered.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Signal transduction is the process in which cells convert external signals, such as hormones, growth factors, neurotrans-
mitters, and cytokines, to a specific internal cellular response, such as gene expression, cell division, or even apoptosis. This
process begins at the cell membrane where an external stimulus initiates a cascade of enzymatic reactions inside the cell
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that typically includes phosphorylation of proteins as mediators of downstream processes [1]. Signal transduction consists of
three stages [2]. The first is reception – an agonist binds to a specific receptor on the cell membrane that triggers a change in
the receptor molecule. The second is transduction. The change in the receptor brings about ordered sequences of biochemical
reactions inside the cell that involve various enzymes, linked by second messengers. The third is response. After receiving the
signal, target protein produces a response which can be any of many different cellular activities, such as activation of a cer-
tain enzyme, rearrangement of the cytoskeleton, or changes in gene expression. Receptors which possess seven-transmem-
brane domains that activate an intracellular effector system via the coupling of G-proteins (guanine nucleotide binding
proteins) play a major role in transmembrane signal transduction [3,4]. G-protein-coupled receptors (GPCRs) constitute
the largest family of cell surface receptors currently known [5], members of which are involved in all types of stimulus-re-
sponse pathways, from intercellular communication to physiological senses. The diversity of functions is matched by the
wide range of ligands recognized by members of the family. This pervasive involvement in normal biological processes
has the consequence of involving GPCRs in many pathological conditions, which has led to GPCRs being the target of 40–
50% of modern medicinal drugs [6].

In its inactive form, the heterotrimeric G-protein that couples to GPCR contains three different subunits a, b and c. Of the
three subunits, Ga subunit, the largest, binds to a GDP [7]. When an agonist binds to a GPCR on the exterior surface of the cell,
the change in conformation of the receptor promotes the exchange of GDP for GTP on the Ga subunit, being presumed to
allow the dissociation of the Ga and Gbc [8,9]. Subsequently, the activated Ga and/or Gbc exert their effect by binding to par-
ticular enzymes or other proteins in the cell. However, the activity of the G protein persists only as long as the Ga is bound to
GTP and subunits remain separated. Eventually, the GTP-Ga subunit hydrolyzes its bound GTP, converting the subunit back
to its inactive GDP-Ga form. Then, the inactive GDP-Ga subunit recombines with Gbc to form the inactive G heterotrimer [7].
In addition to receptor/ligand binding, under normal physiological conditions, dynamic trafficking events of receptors also
occur in the signal transduction process concurrently with the binding [10]. These dynamic trafficking events consist of
internalization, recycling, degradation and synthesis of receptors. In particular, cell surface receptors and receptor/ligand
complexes can be internalized in a process known as receptor-mediated endocytosis (RME) [10]. Receptors and receptor/li-
gand complexes can accumulate, most likely by diffusion in the plasma membrane followed by trapping, in localized mem-
brane regions on the cell surface – called pits. Internalization of receptors occurs when pits, which receptors and/or
complexes congregate within, invaginate and pinch off to form intracellular vesicles. Then the vesicular contents accumulate
in large intracellular organelles called endosomes. Within endosomes, receptors and complexes may be sorted to have at
least two possible fates: recycling to the cell surface or degradation in lysosomes. Due to degradation, the cell can decrease
the number of cell surface receptors and therefore its ability to respond to future doses of the same ligand. Thus, it is nec-
essary for the cell to synthesize new receptors and deliver them to the cell surface.

Focusing on the one step G-protein activation models and the assumption that receptors and G-proteins can move freely
within the cell membrane, extensive mathematical models have been constructed and modified in the past to account for the
role of GPCRs in signal transduction. De Lean et al. [11] proposed the ternary complex model (TCM), in which the receptors
are allowed to interact with G-protein as well as ligands. Several studies (see, for example, [12,13]) have shown that under
certain conditions, sufficient concentrations of receptors are present in the activated state under basal conditions, producing
a response in the absence of agonist – called constitutive receptor activity. To account for constitutive activities, the ex-
tended ternary complex model (eTCM) [14] and the cubic ternary complex model (CTC) [15,16] were proposed. Some recep-
tors can couple to more than one G-protein subtype, activating multiple signaling pathways (see, for example, [12,13,17,18]).
Agonists may express multiple efficacies and exhibit different agonist potency for different effector pathways when coupled
to a single receptor type, depending on the response being measured. Note that efficacy is defined as the maximum response
induced by the agonist and potency is a measure of the concentration of a drug required for it to be effective and is often
defined as the drug concentration that induces half of the maximum response, either activation or inhibition (denoted by
EC50 or IC50, respectively). Many mathematical models have been proposed to describe these events, for example the equi-
librium models of Weiss et al. [15,16] and Leff et al. [19] and the ordinary differential equation models of Riccobene et al. [20]
and Chen et al. [3]. The multiple receptor active conformations model of Chen et al. [3] demonstrates the role of G-proteins in
determining pathway-dependent agonist potency. The model is based on the possibility of agonist-directed trafficking,
allowing the constitutive activities in the absence of any ligand, and two assumptions that the distribution of receptors
and G-proteins is uniform throughout and G-protein activation is considered as a one-step process. However, Chen et al.
[3] neglected receptor trafficking, specifically receptor internalization which normally takes place in a signal transduction
process [10] and occurs rapidly when GPCRs are exposed to agonists [5]. Therefore, it should be more realistic to extend their
model to take into account the dynamic trafficking events of the receptors, consisting of internalization, recycling, degrada-
tion and synthesis.

Due to the fact that there is a considerable amount of pharmacological research in which consideration is focused on effi-
cacy and potency of drugs, steady-state or quasi-steady-state analysis is imperative for elucidation of the results in order to
gain better understanding of the processes. At steady-state, the concentrations and numbers of all species in the system re-
main constant. These steady-state values are crucial values which are directly related to efficacy and can be used to deter-
mine potency. Moreover, in some cases the time scale for the response in signal transduction process is very short and the
measurement procedures can require a few seconds to a few minutes [10]. In these situations, those experimental results
cannot be measured easily at non-steady-state. Hence, steady-state consideration seem to be a good solution for studying
signal transduction in these cases.
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Fig. 1. Dynamic trafficking of receptors. The idea is based on Ref. [10].
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Upon construction of a mathematical model, the model parameters often are only partially known. This implies that mod-
el approximations and numerical estimates and, whenever possible, additional specific experimental measurements are nec-
essary to make a numerical simulation feasible and reliable. To estimate parameters, there are many different kinds of global
optimization methods including both calculus and non-calculus based optimization [21,22]. Evolutionary computation (EC),
also known as biologically inspired methods, or population-bases stochastic methods, is a very popular class of methods
based on the ideas of biological evolution, which is driven by the mechanisms of reproduction, mutation, and the principle
of survival of the fittest [23]. Similarly to biological evolution, evolutionary computing methods generate better and better
solutions by iteratively creating new ‘‘generations” by means of those mechanisms in numerical form. EC methods are usu-
ally classified into three groups: Genetic algorithms (GAs), evolutionary programming (EP) and evolution strategies (ES). Up
to date, GAs are by far the most popular EC methods [23].

In the present work, by modifying the model of Chen et al. [3], we propose a mathematical model to investigate the
dynamics of GPCRs, considering receptor internalization, recycling, degradation and synthesis. Our model still has three
G-protein subtypes. The number of G-protein subtypes in the real biological system can be very different depending on what
system we are dealing with. Here we are aiming to explain the experimental data from Ref. [13] by extending the model from
Ref. [3]. Both Refs. [10,13] did experiments on a biological system which has three G-protein subtypes, so our model has to
have three subtypes of G-protein to make this particular model consistent with the experimental data. We have estimated a
set of the model parameters by using the genetic algorithm and the experimental results obtained by Cordeaux et al. [13],
who studied the effects of varying the total number of receptors on the maximum response, on the intrinsic activities and the
potency order of agonist along separate pathways and on the observed pathway-dependent changes in agonist potency.
These parameters have been assessed to be relevant for the reproduction of the available experimental data and their values
can also help to clarify the dynamics of GPCRs (see Fig. 1).

2. The mathematical model

2.1. Formulation of the problem

We extended the multi receptor active conformations model of Chen et al. [3] by taking into account internalization, recy-
cling, degradation and synthesis of GPCRs. In our model, as shown diagrammatically in Fig. 2, there are three G-protein sub-
types whose numbers will be denoted by Gj, when j = 1,2,3. The input and output signals for this model are an agonist (A)
and activated G-proteins (G�j ), respectively, when j = 1,2,3. In the absence of any agonist (A), the receptor is hypothesized to
exist in four states, an inactive conformation (R) and three active conformations (Rj� ), each interacting with a specific G-pro-
tein subtype. Under basal conditions, the inactive receptor (R) can convert into an active state (Rj� ) with rate constant Lþj , and
from the active back to the inactive state with rate constant L�j . When the receptors are exposed to agonists, both inactive
receptors (R) and three types of active receptors (Rj� ) can be bound to be ligand-bound receptors (RA) and activated ligand-
bound receptors (R�A). Rate constants of inactive receptor (R)/ligand (A) binding and dissociating are K+ and K�, respectively,
and the parameters lj represent the effect of the ligand on receptor activation, corresponding to the various Gj-linked path-
ways. For example, an agonist may exhibit high preference for a particular pathway, namely G1, such that l1� l2,l3,
increasing the population of receptors coupled to this G-protein, reducing that of other active conformations. The effect
of the agonist is felt by slowing down the ligand off-rate, K�/lj, from the ligand-bound activated receptors (Rj�

A ) and, conse-
quently, the backward conversion rate from Rj�

A to RA is L�j =lj.
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Fig. 2. Model structure of (a) receptor/ligand binding and receptor trafficking with multiple receptor conformations; (b) G-protein activation of the
Gj-linked pathway, assuming R* and R�A associate with and dissociate from G-protein at the same rate. Model structures (a) and (b) are coupled together in
the positions of Rj� and Rj�

A , when j = 1,2,3. The added model parameters concerning dynamic trafficking events of receptors are enclosed by dashed-line
boxes. Note that ligands (A), which interact with R and Rj� are not shown in this figure.
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Rate constants describing the internalization of both the active forms and inactive form of free receptors (R;Rj� ) and
receptor/ligand complexes (RA;R

j�

A ) are keR and keC in respective order. Allowing these to be different reflects the possible
selectivity of endocytosis for receptor states. V is the rate of new receptor synthesis and expression on the cell surface as
free receptors only in the inactive form (R). kreR and kreC represent the rate constants for transport of internalized free recep-
tors (Ri;R

j�

i Þ and complexes (RAi;R
j�

AiÞ, respectively, via vesicle from the endosome back to the cell surface – recycling. kdegR and
kdegC represent lumped rate constants for the routing of internalized free receptors (Ri;R

j�

i Þ and complexes (RAi;R
j�

AiÞ from the
endosome to the lysosome, degradation in the lysosome and the release of fragments in the extracellular medium.

As depicted in Fig. 2b, the activated receptors, with or without bound ligand (Rj� ;Rj�

A ), associate with and dissociate from
G-protein with rate constants kþj and k�j for Gj. The symbols Rj�

G and Rj�

AG denote the number of Gj-coupled active receptors and
that of ligand–receptor-Gj complexes, respectively. Both G-protein activation and inactivation are assumed as one-step pro-
cesses with rate constants kj�act and kgtp. In this model, we consider that only GTP-bound Ga subunits (and not Gbc) are the
activated G-proteins – output signals.

Model structures in parts (a) and (b) in Fig. 2 are coupled together in the positions of Rj� and Rj�

A , when j = 1,2,3.
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The important feature of our model is the added parameters concerning dynamic trafficking events of receptors. The
parameters consist of Ri;R

j�

i ;RAi;R
j�

Ai; keR; keC – internalization; kreR,kreC – recycling; kdegR,kdegC – degradation; V-synthesis.
The added parameters are enclosed by dashed-line boxes as shown in Fig. 2.

From the diagram shown in Fig. 2 and based on the principles of mass action kinetics and the assumption that the total
number of receptors and that of each G-protein subtype on the cell surface and the concentration of ligand (A) remain con-
stant throughout the interaction, the system of equations can be derived as follows:
dR
dt
¼
X3

n¼1

L�n Rn� þ K�RA �
X3

n¼1

Lþn þ KþA

 !
R� keRRþ kreRRi þ V ; ð2:1Þ

dRj�

dt
¼ K�

lj
Rj�

A þ Lþj R� ðL�j þ KþAÞRj� � keRRj� þ kreRRj�

i � kþj GjR
j� þ ðk�j þ kj-actÞRj�

G ; ð2:2Þ

dRj�

A

dt
¼ KþARj� þ Lþj RA �

L�j
lj
þ K�

lj

 !
Rj�

A � keCRj�

A þ kreCRj�

Ai � kþj GjR
j�

A þ ðk
�
j þ kj-actÞRj�

AG; ð2:3Þ

dRi

dt
¼ keRR� ðkreR þ kdeg RÞRi; ð2:4Þ

dRj�

i

dt
¼ keRRj� � ðkreR þ kdeg RÞRj�

i ; ð2:5Þ

dRAi

dt
¼ keCRA � ðkreC þ kdeg CÞRAi; ð2:6Þ

dRj�

Ai

dt
¼ keCRj�

A � ðkreC þ kdeg CÞRj�

Ai; ð2:7Þ

dRj�

AG

dt
¼ kþj GjR

j�

A � ðk
�
j þ kj-actÞRj�

AG þ KþARj�

G �
K�

lj
Rj�

AG; ð2:8Þ

dRj�

G

dt
¼ kþj GjR

j� � ðk�j þ kj-actÞRj�

G � KþARj�

G þ
K�

lj
Rj�

AG; ð2:9Þ

dG�j
dt
¼ kj-actðRj�

G þ Rj�

AGÞ � kgtpGbcG�j ; ð2:10Þ
where
Gbc ¼ G�1 þ G�2 þ G�3;

RA ¼ R0 � R� Ri � RAi �
X3

n¼1

ðRn� þ Rn�

A þ Rn�

i þ Rn�

Ai þ Rn�

AG þ Rn�

G Þ;

Gj ¼ gj � G�j � Rj�

AG � Rj�

G ð2:11Þ
with gj’s and R0 constant. Here, we adopt the assumption that the numbers of receptors and G-proteins in the system are
conserved as in the work of Chen et al. [3]. Although in our case receptor synthesis and degradation are also considered,
the net change in the total number of receptors are still very small. We therefore believe that the assumption on receptor
and G-protein conservation is still valid.

2.2. Nondimensionalization

We now nondimensionalize the system of Eqs. (2.1)–(2.10) and (2.11) by the rescaling
t ¼ T�t; R ¼ R0R; Rj� ¼ R0Rj� ; Rj�

A ¼ R0Rj�

A ;

Ri ¼ R0Ri; Rj�

i ¼ R0Rj�

i ; RAi ¼ R0RAi; Rj�

Ai ¼ R0Rj�

Ai;

Rj�

AG ¼ R0Rj�

AG; Rj�

G ¼ R0Rj�

G ; RA ¼ R0RA; A ¼ a0A;

Gj ¼ G0Gj; G�j ¼ G0G�j ; gj ¼ G0�gj; Gbc ¼ G0Gbc; ð2:12Þ
where G0 = g1 + g2 + g3, and thus �g1 þ �g2 þ �g3 ¼ 1. While the ligand concentration (A) remains constant throughout each
interaction, it is convenient for the purpose of drawing the concentration-response curve (which is the result of various
interactions, each with a different ligand concentration), to rescale A by a given, representative, concentration a0 rather than
scaling such that A ¼ 1. The dimensionless quantity A is treated as a parameter in the analysis which follows. We nondimen-
sionalize the reactions, which occur in accordance with the diagram in Fig. 2a, letting by
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T ¼ 1
K�

; Kþ ¼ Kþa0

K�
; Lþj ¼

Lþj
K�

; L�j ¼
L�j
K�

; V ¼ V
R0K�

;

�keR ¼
keR

K�
; �kreR ¼

kreR

K�
; �kdeg R ¼

kdeg R

K�
;

�keC ¼
keC

K�
; �kreC ¼

kreC

K�
; �kdeg C ¼

kdeg C

K�
: ð2:13Þ
In general, the binding of G-protein to an activated receptor leads to the activation of the G-protein and thus the dissociation
rate constant k�j is assumed very small and kj-act � kgtpG0; k

þ
j G0 (based on the supposition that the amount of G-proteins

available in the system is moderate). We now make such assumptions more precise and nondimensionalize the parameters
for receptor and G-protein association/dissociation, the release of activated Ga subunits and the hydrolysis of GTP, in order to
revert to the inactive state (as shown diagrammatically in Fig. 2b) by setting
e ¼ K�

k1�act
;

�kj-act

e
¼ kj-act

K�
; e�k�j ¼

k�j
K�

;

�kgtp ¼
kgtp

K�
G0;

�kþj ¼
kþj
K�

G0; ð2:14Þ
where
�k�j ¼
k�j k1�act

ðK�Þ2
; �kj-act ¼

kj-act

k1�act
; �k1�act ¼ 1: ð2:15Þ
After rewriting the system of equation in terms of the nondimensionalized variables and dropping the overbars henceforth
for brevity, the nondimensionalized system of equations is then
dR
dt
¼
X3

n¼1

L�n Rn� þ RA �
X3

n¼1

Lþn þ KþA

 !
R� keRRþ kreRRi þ V ; ð2:16Þ

dRj�

dt
¼ Lþj Rþ 1

lj
Rj�

A � ðL
�
j þ KþAÞRj� � keRRj� þ kreRRj�

i � kþj GjR
j� þ ek�j þ

kj-act

e

� �
Rj�

G ; ð2:17Þ

dRj�

A

dt
¼ KþARj� þ Lþj RA �

L�j
lj
þ 1

lj

 !
Rj�

A � keCRj�

A þ kreCRj�

Ai � kþj GjR
j�

A þ ek�j þ
kj-act

e

� �
Rj�

AG; ð2:18Þ

dRi

dt
¼ keRR� ðkreR þ kdeg RÞRi; ð2:19Þ

dRj�

i

dt
¼ keRRj� � ðkreR þ kdeg RÞRj�

i ; ð2:20Þ

dRAi

dt
¼ keCRA � ðkreC þ kdeg CÞRAi; ð2:21Þ

dRj�

Ai

dt
¼ keCRj�

A � ðkreC þ kdeg CÞRj�

Ai; ð2:22Þ

dRj�

AG

dt
¼ kþj GjR

j�

A � ek�j þ
kj-act

e

� �
Rj�

AG þ KþARj�

G �
1
lj

Rj�

AG; ð2:23Þ

dRj�

G

dt
¼ kþj GjR

j� � ek�j þ
kj-act

e

� �
Rj�

G � KþARj�

G þ
1
lj

Rj�

AG; ð2:24Þ

dG�j
dt
¼ N

kj-act

e
ðRj�

G þ Rj�

AGÞ � kgtpGbcG�j ð2:25Þ
and
RA ¼ 1� R� Ri � RAi �
X3

n¼1

ðRn� þ Rn�

A þ Rn�

i þ Rn�

Ai þ Rn�

AG þ Rn�

G Þ;

Gj ¼ gj � G�j � NRj�

AG � NRj�

G ð2:26Þ
for j = 1,2,3 and N = R0/G0. The initial conditions are R = 1, Gj = gj with g1 + g2 + g3 = 1, with the other species having zero con-
centrations. Note that we have assumed that the concentration ratio of the receptors and G-proteins is N = R0/G0.
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From Eqs. (2.23) and (2.24), the scaling implies that Rj�

AG;R
j�

G ¼ OðeÞ in fact holds, so that these quantities should be
rescaled. By writing Rj�

AG ¼ eeRj�

AG and Rj�

G ¼ eeRj�

G , Eqs. (2.23)–(2.25) and (2.26) thus become
deRj�

AG

dt
¼

kþj
e

GjR
j�

A � ek�j þ
kj-act

e

� �eRj�

AG þ KþAeRj�

G �
1
lj

eRj�

AG; ð2:27Þ

deRj�

G

dt
¼

kþj
e

GjR
j� � ek�j þ

kj-act

e

� �eRj�

G � KþAeRj�

G þ
1
lj

eRj�

AG; ð2:28Þ

dG�j
dt
¼ Nkj-actðeRj�

G þ eRj�

AGÞ � kgtpGbcG�j ð2:29Þ
and
RA ¼ 1� R� Ri � RAi �
X3

n¼1

ðRn� þ Rn�

A þ Rn�

i þ Rn�

Ai þ eeRn�
AG þ eeRn�

G Þ;

Gj ¼ gj � G�j � eNeRj�

AG � eNeRj�

G : ð2:30Þ
2.3. Quasi-steady state analysis

A quasi-steady state is a situation in which some state variables are approximately constant. Therefore, at the quasi-stea-
dy state the concentrations and numbers of some of the species in our system remain approximately constant; consequently
their time derivatives are extremely small. In the limit e ? 0, Eqs. (2.27) and (2.28) become quasi-steady, i.e., to leading order
they imply
eRj�

AG ¼
kþj Gj

kj-act
Rj�

A ;
eRj�

G ¼
kþj Gj

kj-act
Rj� : ð2:31Þ
Using (2.31) to eliminate Rj�

AG and Rj�

G from (2.17), (2.18) and (2.29) enables these equations to be expressed as follows:
dRj�

dt
¼ Lþj Rþ 1

lj
Rj�

A � ðL
�
j þ KþAÞRj� � keRRj� þ kreRRj�

i ; ð2:32Þ

dRj�

A

dt
¼ KþARj� þ Lþj RA �

L�j
lj
þ 1

lj

 !
Rj�

A � keCRj�

A þ kreCRj�

Ai; ð2:33Þ

dG�j
dt
¼ Nkþj GjðRj�

A þ Rj� Þ � kgtpGbcG�j : ð2:34Þ
At steady-state, Eq. (2.34) can be rewritten as
Nkþj GjðRj�

A þ Rj� Þ � kgtpGbcG�j ¼ 0: ð2:35Þ
When �? 0, Eq. (2.30) becomes
RA ¼ 1� R� Ri � RAi �
X3

n¼1

ðRn� þ Rn�

A þ Rn�

i þ Rn�

Ai Þ;

Gj ¼ gj � G�j : ð2:36Þ
We now substitute the second equality in Eq. (2.36) into Eq. (2.35) to obtain
G�j ¼
Hjgj

1þ Hj
;

when
Hj �
Nkþj

kgtpGbc
ðRj�

A þ Rj� Þ: ð2:37Þ
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We now summarize the overall equations from the results of the quasi-steady state analysis as follows:
dR
dt
¼
X3

n¼1

L�n Rn� þ RA �
X3

n¼1

Lþn þ KþA

 !
R� keRRþ kreRRi þ V ; ð2:38Þ

dRj�

dt
¼ Lþj Rþ 1

lj
Rj�

A � ðL
�
j þ KþAÞRj� � keRRj� þ kreRRj�

i ; ð2:39Þ

dRj�

A

dt
¼ KþARj� þ Lþj RA �

L�j
lj
þ 1

lj

 !
Rj�

A � keCRj�

A þ kreCRj�

Ai; ð2:40Þ

dRi

dt
¼ keRR� ðkreR þ kdeg RÞRi; ð2:41Þ

dRj�

i

dt
¼ keRRj� � ðkreR þ kdeg RÞRj�

i ; ð2:42Þ

dRAi

dt
¼ keCRA � ðkreC þ kdeg CÞRAi; ð2:43Þ

dRj�

Ai

dt
¼ keCRj�

A � ðkreC þ kdeg CÞRj�

Ai; ð2:44Þ
where
RA ¼ 1� R� Ri � RAi �
X3

n¼1

ðRn� þ Rn�

A þ Rn�

i þ Rn�

Ai Þ;

Gj ¼ gj � G�j ð2:45Þ
and
G�j ¼
Hjgj

1þ Hj
;

when
Hj �
Nkþj

kgtpGbc
ðRj�

A þ Rj� Þ: ð2:46Þ
The analysis above can be summarized as follows. Firstly, based on the assumption that each protein species would reach
steady state with different timescales, we thus set some equations equal zero i.e., (2.27), (2.28) and (2.34). With this way we
can reduce the numbers of equation from 10 to 7 ODEs. This is the main reason why we called quasi-steady state (not all
equations in the system reach steady state) which might not be quite appropriate term. Then, we transform the system
of equations into finite difference form. Since it is very time consuming for each generation of getting parameters via genetic
algorithm, we did not directly apply numerical integration process to find the steady state values of optimized parameters.
We instead applied the theorem of geometric series for matrices for finding steady state variables or measurements corre-
sponding to each estimated parameter set (in that generation). These steady state variables will then be used for finding the
fitness function. This process is repeated until we obtain the optimal parameters.

2.4. Steady-state solutions

In order to explain the experimental results obtained in the work of Cordeaux et al. [13], in which measurements were
made after the experiment had been running for a sufficiently long time that steady-state conditions could be assumed. By
using the theorem on geometric series for matrices [24] to find the steady-state solutions, we first transform the model equa-
tions, after our quasi-steady state analysis, into the matrix form. We replace the derivative dy

dt (where y refers to each of our
variables: R;Rj�;Rj�

A ;Ri;R
j�
i ;RAi;R

j�
AiÞ by the finite difference approximation
dy
dt
� yðt þ DtÞ � yðtÞ

Dt
;

which yields the following formula:
yðt þ DtÞ � yðtÞ þ Dtðf ðt; yðtÞÞÞ; ð2:47Þ
when the step size Dt should be very small. Then, we construct the sequence t0, t1 = t + Dt, t2 = t + 2(Dt), . . ., in which yn de-
notes numerical estimate of the exact solution y(tn). Motivated by (2.47), we compute this estimate by the following recur-
sive scheme:
ynþ1 ¼ yn þ Dtðf ðtn; ynÞÞ: ð2:48Þ
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Then, we write these finite-difference equations in the matrix form as
ukþ1 ¼ Duk þ b: ð2:49Þ

Here, uk+1 is a sequence of column vectors, which represents the number of each type of receptors at time step k + 1. In the
current work, our system of equations in the matrix form is represented by (2.49) when
u ¼

R

R1�

R2�

R3�

R1�
A

R2�
A

R3�
A

Ri

R1�
i

R2�
i

R3�
i

RAi

R1�
Ai

R2�
Ai

R3�
Ai

2666666666666666666666666666666664

3777777777777777777777777777777775

; b ¼

V þ 1
0
0
0
Lþ1
Lþ2
Lþ3
0
0
0
0

kec

0
0
0

266666666666666666666666666666664

377777777777777777777777777777775

Dt
and P� ��

D1 ¼ 1

Dt � Lþn � KþA� 1� keR L�1 � 1 L�2 � 1 L�3 � 1 �1 �1 �1
kreR � 1 �1 �1 �1 �1 �1 �1 �1 �Dt;

D2 ¼ Lþ1
1
Dt � L�1 � KþA� keR
� �

0 0 1
l1

0 0 0 kreR 0 0 0 0 0 0
h i

Dt;

D3 ¼ Lþ2 0 1
Dt � L�2 � KþA� keR
� �

0 0 1
l2

0 0 0 kreR 0 0 0 0 0
h i

Dt;

D4 ¼ Lþ3 0 0 1
Dt � L�3 � KþA� keR
� �

0 0 1
l3

0 0 0 kreR 0 0 0 0
h i

Dt;

D5 ¼ �Lþ1 KþA� Lþ1 �Lþ1 �Lþ1
1
Dt �

L�1
l1
� 1

l1
� keC � Lþ1

n o
�Lþ1 �Lþ1

h
�Lþ1 �Lþ1 �Lþ1 �Lþ1 �Lþ1 kreC � Lþ1 �Lþ1 �Lþ1

�
Dt;

D6 ¼ �Lþ2 �Lþ2 KþA� Lþ2 �Lþ2 �Lþ2
1
Dt �

L�2
l2
� 1

l2
� keC � Lþ2

n o
�Lþ2

h
�Lþ2 �Lþ2 �Lþ2 �Lþ2 �Lþ2 �Lþ2 kreC � Lþ2 �Lþ2

�
Dt;

D7 ¼ �Lþ3 �Lþ3 �Lþ3 KþA� Lþ3 �Lþ3 �Lþ3
1
Dt �

L�3
l3
� 1

l3
� keC � Lþ3

n oh
�Lþ3 �Lþ3 �Lþ3 �Lþ3 �Lþ3 �Lþ3 �Lþ3 kreC � Lþ3

�
Dt;

D8 ¼ keR 0 0 0 0 0 0 1
Dt � kdeg R � kreR
� �

0 0 0 0 0 0 0
� �

Dt;

D9 ¼ 0 keR 0 0 0 0 0 0 1
Dt � kdeg R � kreR
� �

0 0 0 0 0 0
� �

Dt;

D10 ¼ 0 0 keR 0 0 0 0 0 0 1
Dt � kdeg R � kreR
� �

0 0 0 0 0
� �

Dt;

D11 ¼ 0 0 0 keR 0 0 0 0 0 0 1
Dt � kdeg R � kreR
� �

0 0 0 0
� �

Dt;

D12 ¼ �keC �keC �keC �keC �keC �keC �keC �keC �keC �keC½
�keC

1
Dt � kdeg C � kreC � keC
� �

�keC �keC �keC
�
Dt;

D13 ¼ 0 0 0 0 keC 0 0 0 0 0 0 0 1
Dt � kdeg C � kreC
� �

0 0
� �

Dt;

D14 ¼ 0 0 0 0 0 keC 0 0 0 0 0 0 0 1
Dt � kdeg C � kreC
� �

0
� �

Dt;

D15 ¼ 0 0 0 0 0 0 keC 0 0 0 0 0 0 0 1
Dt � kdeg C � kreC
� �� �

Dt:

Under stability conditions on the time step, the time dependent solution uk+1 = Duk + b may converge to the solution of the

discrete steady state problem u = Du + b. We use the following theorem of Geometric Series for Matrices [24] and the defi-
nition of infinity norm [24] in order to find the steady-state solutions.

Theorem 1 (Geometric Series for Matrices). Consider the scheme uk+1 = Duk + b. If the infinity norm of D is less than one, then

1. uk+1 = Duk + b converges to u = Du + b,
2. I � D has an inverse,
3. I + � � � + Dk converges to the inverse of I � D
and the steady state solution is u = (I � D)�1b.
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We note that, based on this theorem, initial conditions are not involved in the determination of the steady-state solutions.

Definition 1. The infinity norm of the n 	 1 column vector x = [xi] is a real number
kxk �max
i
j xi j :
The infinity norm of an n 	 n matrix D = [dij] is
kDk �max
i

X
j

j dij j :
We can conclude that for Eq. (2.40), the condition for convergence is kDk �max
i

P
j
j dij j< 1 and the steady-state solution is

u = (I � D)�1b.
3. Parameter estimation

3.1. Genetic algorithms (GAs): a tool for computational parameter optimization

Genetic algorithms (GAs) are probabilistic search techniques developed by Holland and his colleagues in 1975. GAs can
evolve good optimum solutions by mimicking two biology mechanisms: natural selection and chromosome encoding
[29,30]. In natural, organisms evolve by means of two primary processes: natural selection and sexual reproduction [30].
Natural selection determines which individuals in a population survive or die. Through natural selection, living organisms
with a greater fitness to the environment have greater probability of surviving and reproducing. Sexual reproduction ensures
genetic variation via genetic recombination among their offspring. These variations allow the organisms to evolve.

To adapt GAs to solve an optimization problem, candidate solutions need to be represented in form of GAs-string, called
‘‘chromosomes” (see Fig. 5). This example uses a binary code representation in which the solutions are then transformed and
written as a string of bits, 0s or 1s. Then, a phenotype of an organism is evaluated by fitness function, a mathematical func-
tion used to measure how well the solution solves the problem. Mimicking two natural adaptation mechanisms including
natural selection and chromosome encoding, GAs evolve solution to the problem by repeatedly modifying a population
via three major GAs operators–selection, crossover, and mutation. Simulating natural selection, the selection operator is car-
ried out to choose and reproduce the strings with high fitness scores while others are eliminated. The selected chromosomes
are copied to create parent chromosomes. Then, crossover operation is applied into parent chromosomes. It combines seg-
ments of parent chromosomes to form two offspring. Crossover allows an exploitation of good characteristics (or the promise
search space) determined by the parents. The last GA operator is mutation. Mutation alters one or more genes of a selected
chromosome, by a random change with small chance. This operation introduces diversity into the population. The diversity
of population could help avoid local optimum convergence of the algorithm. The iterative algorithm to evolve a solution to a
problem on a computer could be summarized as follows (see Fig. 6):

(1) Population preparation;
(2) Fitness evaluation;
(3) Selection;
(4) Crossover and mutation.

Because of their simple and straightforward mechanism as mentioned earlier, GAs can be seen as a tool empowering
researchers’ competence in scientific investigation.

3.2. Genetic algorithm via MATLAB�

Although the logic of GAs is simple, applying GAs in practice involves many programming tasks. This programming may
be seen as an obstacle for students who lack of experience with them. Fortunately, present technologies have provided pow-
erful tools to aid researchers and educators.

3.2.1. MATLAB�

MATLAB� (matrix laboratory) is a software package for numerical matrix computations. It provides a friendly interactive
environment that enables students to use it at many levels, from simple to advanced calculations. It contains advanced tools
for technical computing such as algorithm development, data visualization, and mathematical function, e.g., data analysis,
statistics, linear algebra, numeric integration, and optimization.

3.2.2. Genetic algorithm tool
Genetic algorithm tool (gatool) is an optimization tool using GAs provide by MATLAB�. It can be accessed through a

graphical user interface (GUI) or the MATLAB� command line. GUIs let users quickly and conveniently define a problem
and set various algorithm options to fine-tune the optimization, while the command line allows users to modify or create
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their own custom functions. In addition, it provides a number of plotting functions for run time visualization that gives feed-
back about the optimization. To open the tool, enter
Table 1
The val

Parame

Lþ1
Lþ2
Lþ3
L�1
L�2
L�3
l1

l2

l3

kþ1
kþ2
kþ3
K+

kgtpGbc

V
keR

kreR

kdeg R

keC

kreC

kdeg C
� gatool
at the MATLAB� prompt.

3.3. Genetic algorithm parameter optimization implementation

In the current paper, the optimization problem consists of the estimation of 21 parameters of our ordinary differential equa-
tion model, formed by Eqs. (2.45), (2.46) and (2.49) that describe the variation of numbers of active G-proteins (which corre-
spond to the responses to the agonist concentration). The parameters consist of Lþj ; L

�
j ;lj; k

þ
j ;K

þ; kgtp;Gbc;V ; keR; kreR; kdeg R; keC ;

kreC and kdegC, when j = 1,2,3. In order to determine the optimal values of these parameters, we have to minimize a weighted
distance measure J between experimental and predicted values of state variables, represented by the vector y [23]:
J ¼
Xm

j¼1

Xn

i¼1

wijf½ypredðiÞ � yexpðiÞ�jg
2
; ð2:50Þ
where the entries of vector y represent values of the steady state activated G-proteins concentration, n is the number of data
points for each experiment, m is the number of G-protein subtypes, yexp represents the known experimental data, and ypred is
the vector of states that corresponds to the predicted theoretical evolution using the model with a given set of the 21 param-
eters. Furthermore, wij corresponds to the different weights taken to normalize the contributions of each term. Here we let
wij = {1/[yexp(i)]j}2.

In this study, we use the genetic algorithm approach to estimate the values of the model parameters. Genetic algorithm
tool (a graphical user interface) in MATLAB has been applied for this purpose. Eq. (2.50) gives a fitness function that we want
to minimize. In this optimization scheme, there are two constrains. One is required for the steady-state, that is, the infinity
norm of D being less than one, and the other, that assists in finding functional minima faster, is the bounds of the variables.
Based on biological data and our previous estimations, we set the ranges, within which our variables are allowed to vary as
given in the following.
Lþj
ues of the

ter
L�j
model paramete
lj
rs for NECA and
kþj
CPA.
Kþ
NECA

10.8576
6.9852
0.0737

1499.9997
1062.9664

824.2943
2499.9533

911.0545
217.7341

99.9858
69.3132

4.1467
0.6160

23.7822
0.9993

159.6044
2499.8288

15.9061
294.2709

2448.4638
484.6408
kgtpGbc
 V
 keR; kreR; kdeg R; keC ; kreC ; kdeg C
0.05-20
 5-1500
 1-2500
 0.01-100
 0.001-10
 0.01-100
 0-1
 0-2500
We assume that the numbers of all G-protein subtypes are equal (that is nondimensionalized g1 = g2 = g3 = 1/3) and the
concentration ratio of the receptors and G-proteins (N = R0/G0) equals 1. In order to estimate the parameters, we use the
experimental results of Cordeaux et al. [13] concerning the effect of the agonist NECA and CPA, acting on adenosine A1 recep-
CPA

19.9677
12.7865

1.0099
1399.4590
1147.0858
1221.9734
2197.6745

63.9351
21.8868
99.9842
33.9221

0.3783
4.1654

13.3884
0.6555

53.8139
2079.3102

17.0189
424.2536

2256.6692
2005.1535
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tors, on the activation of Gi,Gs and Gq(for more information about G-protein pathways, see [25]). Note that the subscripts i,s
and q identify different G-protein families, each regulating specific classes of effector molecules within the cell.

4. Results and discussion

All the computations were performed in MATLAB using a PC/Pentium (1.73 GHz) platform running Windows XP 2002. We
want to minimize the fitness function (J) in Eq. (2.50) meaning that we have to find three steady state activated G-proteins
concentrations for each G-protein subtypes that minimize J. The minimum results of fitness function are 1.0457 	 10�5 for
NECA agonists and 7.9581 	 10�6 for CPA, obtained after a total computation time of 3.55 h for each result of fitness function,
when we set population size = 60 and running for 200 generations in this GA optimization. The size of population is parameters.
Fig. 3. Prediction of the effect of NECA (dashed line) and CPA (solid line), given relative to the maximum response of CPA, on G-protein activation for (a)
Gi = G1; (b) Gq = G2; (c) Gs = G3. Parameter values are given in Table 1 with g1 = g2 = g3 = 1/3 and N = 1 for both drugs.
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Setting the population size too small may yield premature convergence of GAs. While, setting the large size of population re-
mains the population variety that could enable GAs to search more point and thereby prevent local optimum trapping of the
algorithms. However, the time used for a population improvement might be too long for the large population size. To optimal
population size, an experiment is conducted to study the effect of population size on GAs performance. In this experiment, the
population size is set to 10, 20 (default), 30, 40 and 50. We obtained the estimated parameters according to Table 1.

To verify the validity of the model and the results obtained so far, we now attempt qualitatively reproduce the experi-
mental results of Cordeaux et al. [13]. We set Gi = G1, Gq = G2, Gs = G3 with g1 = g2 = g3 = 1/3 and N = 1 for both drugs – NECA
and CPA, and the other parameter values are set as expressed in Table 1. The comparison of G-protein activation by these two
agonists representing the effect of the agonists NECA and CPA on the activation of G subtype 1, 2, and 3 is depicted in Fig. 3. It
was found that except G subtype 1, NECA appeared to be a more efficacious drug than CPA. On contrary, when we consider
the minimum doses of agonists required for the effectors (use G*’s as indicators) to reach the maximum, the results signify
that CPA was more potent than NECA. In other words, in terms of drug efficacy NECA agonists seem to be more effective drug
than CPA when they were linked with pathways associated with G subtype 2 and 3. The results are in good qualitative agree-
ment with the responses recorded by Cordeaux et al. [13], on the effect of NECA and CPA on [35S]GTPcS binding to Gai(1�3),
GaQ/11 and GaS (in their Fig. 9).

The model parameters allow us to obtain qualitative insight into the likely governing mechanisms and their interactions.
The values of l1, l2 and l3, signifying the effect and preference of drugs for the different pathways, which yield l1 > l2,l3 for
both NECA and CPA, infer that both agonists prefer the G1- (that is Gi-) linked pathway, which means that the available recep-
tors will be preferentially channeled to bind with the Gi before the others. In addition, the parameters for receptor and
G-protein association (kþj ) with kþ1 > kþ2 ; k

þ
3 indicates that the association of active receptors type 1 (R1�;R1�

A Þ with their
Fig. 4. Prediction of the effect of NECA agonist concentration, given relative to the total number of all types of receptors in the system (Rtotal = 1), on number
of each type of receptors. Parameter values are given in Table 1 with g1 = g2 = g3 = 1/3 and N = 1.
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specific G-protein subtype is greater than that of the other receptor type, which leads to the more active G-protein subtype1
(G�1Þ. For simplicity, the values of Lþj and L�j (when j = 1,2,3) can be analyzed in terms of Lj ¼ L�j =Lþj (which has appeared in
[3]). With our estimated parameter values, we obtain L1 = 138.1521, L2 = 152.1741 and L3 = 11184.45 for NECA, and
L1 = 70.0861, L2 = 89.7107 and L3 = 1209.9945 for CPA. We can see that L3� L1,L2. This means that, at the steady-state,
the expression of active state R3* is much lower than R1* and R2*. From Table 1, keC > keR for both agonists, from which it
can be deduced that the agonists stimulate internalization of GPCRs – adenosine A1 receptors. This hypothesis is consistent
with many other earlier experimental results about internalization of GPCRs (reviewed by [26]) especially the experiments
on adenosine A1 receptors [27,28]. Similarly, for degradation, the rate constant kdeg C > kdegR, which leads us to suppose that
the ligands also induce degradation of adenosine A1 receptors. However, due to the values of recycling rate constants,
kreC � kreR, we hypothesize that ligands are not involved in recycling of the receptors.

In order to get insights into the dynamics of GPCRs, we find the steady-state value of each type of receptors using values
of our model parameters as given in Table 1, and then illustrate the dependence of the number of each type of receptors on
the agonist, the concentration of which is considered here only for NECA (Fig. 4).

Fig. 4a shows that the number of receptor/ligand complexes (RA) increases with A as more agonists become available to
bind with free receptors and saturates when all the free receptors (R) in the system is bound. Because some of the receptor/
ligand complexes (RA) are transformed into other receptor states, that is the greatest contribution to the result that the max-
imum number of receptor/ligand complexes (RA) is not equal to that of the free receptors (R) which appear when the system
is exposed to very low concentration of agonists. In the same way, the numbers of other complex states Rj�

A ;RAi and Rj�

Ai (when
j = 1,2,3) also rise as agonist concentration (A) increases (see Fig. 4b and c). The numbers R;Rj� ;Ri and Rj�

i (when j = 1,2,3)
decline while agonist concentration (A) is on the increase (see Fig. 4c–e). The reason why R and Rj� decrease is that when
agonists exist in the system, they tend to bind with free receptors which leads to the conversion of R and Rj� into RA and
Rj�

A . Therefore, the more agonists are present, the less R and Rj� are. The effect of agonist concentration on internalization
of active and inactive free receptors (Ri and Rj�

i ) can be explained by the fact that free receptors (R and Rj� ) remaining in
the system, exposed to high concentration of agonists, are so few that few receptors can be internalized to become the states
Ri and Rj�

i . Regarding the order of magnitude of the receptor numbers as shown on Y-axis, we can see that the value of Ri is
more than that of Rj�

i . The reason for this is that the number of inactive free receptors (R) is much higher than that of active
free receptors (Rj� ) in the system. This means that there are much more available inactive receptors to be internalized than
active free receptors. However, the fact that R > Rj� can not be seen directly from Fig. 4 due to the limitation of plotting the
numbers of receptors which are of wildly different orders of magnitude.

In order to know the proportions of each receptor type, we display the amounts of each state of receptors at steady-state
when exposed to agonists at one value of concentration (as shown in Table 2).

The numbers of receptors in this table can help to visualize receptor trafficking and the range of possible behavior. The se-
quences of receptor types are ranked based on their numbers from the maximum to the minimum as follows:
RA;R;R

1�

A ;R
2�

A ;RAi;Ri;R
1�

Ai ;R
2�

Ai ;R
1� ;R2� ;R3�

A ;R
1�

i ;R
2�

i ;R
3�

Ai ;R
3� ;R3�

i for NECA and RA;R
1�

A ;RAi;R
2�

A ;R;R
1�

Ai ;R
2�

Ai ;R
3�

A ;Ri;R
1� ;R2� ;R3�

Ai ;R
3� ;R1�

i ;

R2�

i ;R
3�

i for CPA. These orders can be analyzed as follow. When both agonists (A = 10) are present in the system, RA is greatly in-
duced. RA then is mostly transformed into R1�

A ;R
2�

A ;RAi which results in these three states being present at great amounts in the
system. The reason that the value of R1�

A is greater than R2�

A is Lþ1 > Lþ2 and l1 > l2. Lþ1 > Lþ2 means that the inactive receptors type
1 are converted into an active state more rapidly than that of type 2. As for l, the higher its value is, the smaller the backward
conversion rate L�j =lj from Rj�

A to RA becomes. Regarding the Lj value that represents the ratio of rate constant of converting Rj�

into R to that of R into Rj� ; L3 > L2 > L1 can explain the phenomenon of the numbers of active receptors that R1� > R2� > R3� .
Moreover, Rj�

Ai > Rj�

i when i = 1,2,3, consistent with the result that internalization rate constant of receptor/ligand complexes
is higher than that of free receptors (keC > keR). The number of inactive complexes (RA) for the CPA activated system is higher
than that for NECA because K+ of CPA is bigger than K+ of NECA. (K+ represents the rate constant of receptor/ligand association).
Fig. 5. The process of GAs string representation of the three parameters.



Fig. 6. Flowchart of simple genetic algorithm.

Table 2
The numbers of receptors at steady-state when exposed to NECA and CPA of which nondimensionalized concentration (A) are equal to 10. Data have been
expressed as percentages (%) of the total number of receptors in each system.

Parameter NECA CPA

R 20.8629 3.2708
R1� 0.1503 0.0453
R2� 0.1362 0.0352
R3� 0.0018 0.0026
R1�

A 11.4186 7.5412
R2�

A 7.2673 4.4458
R3�

A 0.0729 0.2990
RAi 5.1850 7.5190
R1�

Ai 1.1456 0.7507
R2�

Ai 0.7291 0.4426
R3�

Ai 0.0073 0.0298
Ri 1.3236 0.0840
R1�

i 0.0095 0.0012
R2�

i 0.0086 0.0009
R3�

i 0.0001 0.0001
RA 51.6811 75.5319

Table 3
The numbers of active G-protein subtypes at steady-state in the systems exposed to NECA and CPA of which nondimensionalized concentration (A) are equal to
10. Data have been expressed as percentages (%) of the total number of G-proteins in each system. (Gtotal ¼ G�1 þ G�2 þ G�3 þ G1 þ G2 þ G3 ¼ 100%).

Parameter NECA CPA

G�1 10.9075 12.0553
G�2 5.9160 3.3987
G�3 0.0043 0.0028
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The proportions of each active G-protein types at steady-state when exposed to agonists at one concentration value are
shown in Table 3. We explain these proportions by considering the value of kþj . From Table 1, kþ1 > kþ2 > kþ3 for both agonists.
kþj is the rate constant for coupling of activated receptors type j and inactive G-proteins type j that leads to activation of
G-proteins. Therefore, the higher is the value of the kþj , then the higher is the number of active G-protein type j, which
can explain why G�1 > G�2 > G�3.

5. Conclusion

Under normal physiological conditions, many dynamic trafficking events of GPCRs occur in the signal transduction pro-
cess concurrently with the receptor binding [10]. These dynamic trafficking events are usually classified into four groups;
internalization, recycling, degradation and synthesis. Of all GPCR activity and regulation, the internalization or sequestration
of agonist-activated receptors into the intracellular membrane compartments of the cell has become the subject of intensive
investigation over the past several years [26]. However, qualitative studies of internalization and the other dynamic traffick-
ing events of GPCRs are more difficult than that of surface receptor/ligand binding because the molecular species must be
followed as they move through various cellular organelles. Due to this fact, mathematical modeling plays an important role
in studying these trafficking processes.

In this study, we build on the model of Chen et al. [3] and propose a mathematical model to investigate the dynamics of
GPCRs, basing our model on the possibility of agonist-directed trafficking, allowing the constitutive activities in the absence
of any ligand, and three assumptions that the distribution of receptors and G-proteins is uniform throughout, G-protein acti-
vation is considered as a one-step process, and receptor trafficking rate constants for each conformation state of free receptor
and complexes are equal. By using genetic algorithm and the experimental results obtained by Cordeaux et al. [13], we ob-
tain approximate values of model parameters (see Table 1) which helps us to gain a better understanding of the dynamics of
GPCRs. Moreover, these parameters are also used to find steady-state levels of all types of G-proteins and receptors. The stea-
dy-state levels of the activated G-proteins are depicted in Fig. 3, consistent with experimental data [13] on the activation of
individual G-protein using [35S]GTPcS binding. The numbers of receptors are shown in Fig. 4 and Table 2 in order to obtain
insights into receptor trafficking. In addition, all these solutions confirm that agonists (NECA and CPA) stimulate internali-
zation of GPCRs (adenosine A1 receptors) and lead us to two hypotheses. The first is that NECA and CPA also induce degra-
dation of adenosine A1 receptors. The second is that recycling of adenosine A1 receptors is independent from the existing
agonists. We hope that this study provides a basis for reliable production and analysis of agonist pharmacology within sys-
tems of promiscuous multiple effector pathways.

Lastly, we are now on the process of interpretating these obtained optimized parameters. With more understanding their
biological meanings and implications, it would provide us more confidence or a way to better or adjust our model. In addi-
tion, since there are a large numbers of parameters (21 parameters) to deal with, it may be helpful if we can improve our
numerical algorithm to get better the computational times. Once these all mentioned factors are optimized, we believe that
the study of time-dependent problem corresponding to this work would be very interesting and benefit other researchers.
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